CALL STREET, S

ENGINEERING TOMORROW

#### **Emerging Oil Free Technologies**

1.1.1.1.1.1.1.1

Ray Good Global Director of Application Engineering Danfoss Turbocor Compressors, Inc. rgood@danfoss.com

DALLER DAL MALE IN THE REAL PROPERTY AND A

# Agenda

- Chiller Overview
- Benefits of Oil Free
- Oil Free Compressors Today
- Next Generation Oil Free Compressors
- Oil Free Future

## Learning Objectives

- Obtain an overview of new compressor technologies using magnetic, ceramic, and gas (foil) bearings, which can operate without oil.
- Introduce advances in compression technology, which enable oil-free systems for more demanding air-cooled applications.
- Explore the current and expanding opportunity for oil-free technologies in air conditioning systems.

#### Background

What is a Chiller?

- A chiller is a machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle
- The liquid is circulated through a heat exchanger to cool air, equipment or process application as required



#### Background

Four basic components of a vapor compression chiller

- Evaporator
- Compressor
- Condenser
- Expansion Valve



#### Two Major Types of Chillers

Heat from application load is rejected into the atmosphere in 2 ways:

- Air Cooled
- Water Cooled Cooling Tower





#### Compressor Types Used in HVAC



#### Oil – A Critical Component

- Lubricate bearings
- Form seal during compression
- Open drive compressor shaft seal
- Lubricate gears
- Lubricate ancillary system components



#### Oil Management – A Critical System



#### Oil Management

Risks with oil management system

- Complexity and cost of additional components
- Maintenance



| Component               |  |
|-------------------------|--|
| Oil Sump                |  |
| Oil Sump Strainers      |  |
| Oil Pump                |  |
| Oil Filter              |  |
| Oil Heater              |  |
| Oil Separator           |  |
| Oil Cooler              |  |
| Oil Pressure Transducer |  |
| Oil Piping and Valves   |  |
| Oil Sightglass          |  |

| Required Maintenance                              | Frequency     |
|---------------------------------------------------|---------------|
| Check Oil Pressure                                | Daily         |
| Check Oil Level                                   | Daily         |
| Inspect Oil Pump Operation                        | Weekly        |
| Inspect Oil Sump Heaters                          | Weekly        |
| Oil Analysis (Acidity, Moisture, Viscosity, etc.) | Quarterly     |
| Oil Filter Change                                 | Semi-Annual   |
| Oil Change                                        | Annual        |
| Inspect Oil Sump Strainers                        | Every 5 years |

#### Risks with oil management system

- Added components can increase risk for failure
- Possible alarms or faults for chillers with oil management systems:

#### Alarms

Low Oil Pressure

High Oil Pressure

Low Oil Temperature

High Oil Temperature

Loss of Oil Flow

Oil Pressure Transducer Failure

*Oil Temperature Sensor Failure* 

Oil Pump Failure

Oil Pump VFD Failure

Oil Filter Clogged



## Other Negative Impacts of Oil

- Performance degradation
- Environmental impact of low efficiency

From ASHRAE Research Project 751-RP,

"Experimental Determination of the Effect of Oil on Heat Transfer with Refrigerants HCFC-123 and HFC-134a",

Conclusions and Recommendations:

"The heat transfer ratio drops steadily with oil concentration and reaches a value of 0.65 [from 1.0 normalized] at an oil concentration of 10%."



Facture to evaluated excerning of including in a collect analoguement canner cally increase capacity and efficiency. Alcosts from it imprens and some suggestions on from to solve and evan prevent the protient



#### **Oil Contamination**

| Oil In Evaporator | Performance Loss |
|-------------------|------------------|
| 1-2%              | 2-4%             |
| 3-4%              | 5-8%             |
| 5-6%              | 9-11%            |
| 7-8%              | 13-15%           |

Source: The News. 04/15/04, by Jack Sine

# Tsinghua University Study - 2014



- A two year project with data collecting spanning over 6 years
- 24 Buildings in study
- 36 Well maintained chillers analysed
  - 26 Centrifugals
  - 10 Screw
- Project team was headed by Mr Wang Baolong

# Tsinghua University Study Confirms Chiller Efficiency Loss Over Time



Operation Time/year

## Sources of Performance Degradation





www.shutterstock.com - 137811743

 Excess oil accounted for 30% of the performance degradation There is an Alternative!!



## Oil Free Bearing Types



## Magnetic Bearing Compressor

![](_page_17_Figure_1.jpeg)

## Full and Hybrid Ceramic Bearings

![](_page_18_Figure_1.jpeg)

# Gas Bearing (plain journal bearing illustrated)

![](_page_19_Figure_1.jpeg)

## Foil or Leaf Foil

![](_page_20_Picture_1.jpeg)

## **Bump Foil Bearing**

![](_page_21_Figure_1.jpeg)

#### Mesh Pad Bearing

![](_page_22_Figure_1.jpeg)

# Oil Free Compressor Technology Comparison

|                       | Bearing Type |         |           |
|-----------------------|--------------|---------|-----------|
| Characteristic        | Magnetic     | Ceramic | Gas(foil) |
| High Speed Capability |              |         |           |
| Load Capability       |              |         |           |
| Friction Losses       |              |         |           |
| Complexity            |              |         |           |
| Cost                  |              |         |           |
| Reliability           |              |         |           |
| High Capacity Cooling |              |         |           |

#### Benefits of Oil Free Compressors

- Simple design
- Reduces maintenance

![](_page_24_Picture_3.jpeg)

| Сотро                | onent         |
|----------------------|---------------|
| Oil Sump             |               |
| Oil Sump             | a. rs         |
| Oil Pum <sub>l</sub> |               |
| Oil Filte            |               |
| Oil Hea              |               |
| Oil Sepa             | tor           |
| Oil Coole            |               |
| Oil Pressu           | ure ransducer |
| Oil Piping           | and .         |
| Oil Sightg           | lass          |

| Required N        | lainte                         | Frequency     |
|-------------------|--------------------------------|---------------|
| Check Oil Pressu  | Ire                            | Daily         |
| Check Oil Level   |                                | Daily         |
| Inspect Oil Pun   | Operatio.                      | <i>eekly</i>  |
| Inspect Oil Sun   | Heaters                        | eekly         |
| Oil Analysis (Ad  | ity, Moisture, Vistority, etc. | .) uarterly   |
| Oil Filter Change |                                | semi-Annual   |
| Oil Change        |                                | Annual        |
| Inspect Oil Sum   | o Stran                        | Every 5 years |

# Reduced Risk of Failure

Alarms associated with oiled management systems or no longer needed

![](_page_25_Picture_2.jpeg)

# Applications for Oil Free Compressors

- Water cooled chillers
  - Comfort cooling
  - Process applications
- Vertical Market applications
  - Schools
  - Data centers
  - Office buildings
  - Healthcare

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_12.jpeg)

# Benefits of Air Cooled Chillers

- Lower system installation cost
- Faster design cycles
- Smaller mechanical footprint
- Reduces water consumption
- Lower maintenance no cooling tower
- Reduce risk of legionella

![](_page_27_Picture_7.jpeg)

![](_page_27_Figure_8.jpeg)

## Challenges for Air Cooled Chillers

•Size

![](_page_28_Picture_2.jpeg)

## Challenges for Air Cooled Chillers

Outdoor Application

![](_page_29_Picture_2.jpeg)

## Challenges for Air Cooled Centrifugal Chillers

![](_page_30_Figure_1.jpeg)

#### Standard Chiller – Heat Rejected to Atmosphere

![](_page_31_Figure_1.jpeg)

## Heat Reclaim/Heat Recovery/Heat Pumps

- Heat Recovery / water-water heat pump
- Energy savings by utilizing waste heat
- Can help downsize or eliminate boiler

![](_page_32_Figure_4.jpeg)

## Thermal Storage

- Shifts energy consumption to less expensive off peak hours
- Lower utility rates

![](_page_33_Figure_3.jpeg)

# Next Generation Oil Free Compressors

![](_page_34_Figure_1.jpeg)

## Oil Free Compressor Current State

![](_page_35_Figure_1.jpeg)

# Oil Free Compressor Future

![](_page_36_Figure_1.jpeg)

# Questions?

![](_page_37_Picture_1.jpeg)

Ray Good rgood@danfoss.com